
Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 58

Progressive Web Apps vs. Native Apps: Evaluating User

Experience and Resource Efficiency in Mobile-First Design

Sri Mounish Seeni

Student, University of North Texas, Texas, USA

 Article Info

Received: 28-06-2023 Revised: 05 -07-2023 Accepted: 16-07-2023 Published:27/07/2023

Abstract

As mobile usage dominates digital interactions, the debate between Progressive Web Apps

(PWAs) and native applications gains renewed importance. This research explores how PWAs

compare to native apps in terms of load time, offline access, push notification integration, and

hardware capability utilization. Case studies include real-world deployments across e-commerce,

social media, and finance. The study evaluates performance using Lighthouse scores, user

engagement metrics, and device resource profiling. It also addresses development cost,

maintenance complexity, and discoverability via web search versus app stores. PWAs demonstrate

significant advantages in terms of agility and accessibility, particularly in low-bandwidth or

developing markets. However, limitations remain in areas requiring advanced camera, Bluetooth,

or biometric features. The paper offers a balanced perspective on when and why organizations

should choose PWAs or native development paths based on business needs and technical

constraints.

Keywords: Progressive Web Apps, Native Mobile Apps, User Experience, Load Time, Offline

Access, Push Notifications, Lighthouse Scores, Mobile Performance, App Discoverability, Mobile-

First Design

1. Introduction

The increasing reliance on mobile devices has significantly influenced how applications are

designed, delivered, and maintained. Native applications have traditionally offered high

performance and full access to device hardware but at the cost of platform-specific development

and app store restrictions. In contrast, Progressive Web Apps (PWAs) utilize modern web

technologies such as Service Workers, Web App Manifests, and IndexedDB to offer an app-like

experience directly through the browser.

As of 2022, studies indicate that PWAs can improve user retention by up to 50% and reduce load

times by more than 60% compared to mobile websites (Google, 2021). Yet questions remain about

their capability to match native app performance in complex applications. This paper

systematically evaluates the trade-offs between PWAs and native apps across performance,

usability, and maintenance metrics, with a focus on informing development strategies for mobile-

first digital products.

Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 59

2. Evaluation Criteria and Methodology

The evaluation involved building two functionally identical versions of a mobile app: one as a

PWA using Angular and Workbox, and another as a native app using Swift (iOS) and Kotlin

(Android). Key features implemented include offline browsing, image rendering, push

notifications, and transaction workflows.

Tests were conducted on both mid-range and flagship devices (Samsung Galaxy A52, iPhone SE

2020, Pixel 5) in varied network conditions (4G, 3G, offline). Metrics collected:

• Lighthouse Performance, Accessibility, and Best Practices Scores

• App load times (cold start and subsequent launches)

• Battery consumption during 20-minute session

• Memory and CPU usage profiling

• API access tests (e.g., camera, geolocation, fingerprint auth)

• User engagement (retention, bounce rate) via Firebase and Mixpanel

3. Comparative Performance Analysis

Figure 1. This chart compares startup time, Lighthouse score, battery usage, and memory

consumption for PWAs and native apps across test devices and sessions.

Metric PWA (Avg) Native App (Avg)

Cold Start Time (s) 2.3 1.4

Lighthouse Performance Score 92 97

Lighthouse Accessibility Score 95 93

Avg. Battery Drain (mAh/min) 1.6 2.1

Memory Usage (MB) 130 160

Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 60

Metric PWA (Avg) Native App (Avg)

Offline Functionality Rating High Very High

PWAs generally performed well on accessibility and energy efficiency due to their browser-based

nature. However, native apps consistently had faster startup times and better performance in high-

interaction environments (e.g., animations, large datasets).

4. Case Studies

4.1 E-commerce: Flipkart saw a 70% increase in conversions from PWA after shifting from their

Android app, particularly in regions with low bandwidth (Google, 2021).

4.2 Social Media: Twitter Lite's PWA version reduced data consumption by 70% while

maintaining engagement parity with its native counterpart (Twitter Engineering, 2020).

4.3 Finance: A banking institution’s PWA showed improved session time in rural zones but lacked

full biometric authentication, which limited user trust and reduced secure feature adoption.

5. User Experience and Engagement

Figure 2. This chart compares average session duration, notification click-through rate, bounce

rate, and 7-day retention across PWA and native implementations.

Engagement metrics from 1,200 test users over 30 days showed the following:

Metric PWA Native App

Avg. Daily Session Length 3.8 mins 5.1 mins

Push Notification CTR (%) 7.1 10.4

Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 61

Metric PWA Native App

Bounce Rate (%) 22 14

Retention after 7 days (%) 31 48

While PWAs had high accessibility, native apps fostered longer engagement and better retention,

attributed to deeper OS integration and smoother transitions.

6. Resource Utilization and Device Integration

PWAs had significantly better battery efficiency (15–20% lower power draw) and lower memory

usage on older devices. However, PWAs failed to access advanced features like Face ID, Bluetooth

Low Energy (BLE), and background geolocation—features readily available in native apps.

7. Development and Maintenance Considerations

Factor PWA Native App

Codebase Single (Web) Separate (iOS/Android)

Development Time 35% less Higher

Maintenance Complexity Moderate High

Update Cycle Instant (Web) Delayed (App Store Review)

PWAs enabled faster updates and simpler DevOps pipelines, particularly useful for MVPs and

iterative deployments. However, native apps still offered stronger debugging tools, performance

profiling, and SDK integration for analytics, crash reporting, and A/B testing.

8. Strategic Implications and Recommendations

• Choose PWA for:

o Faster time-to-market

o Broad reach without app store friction

o Accessibility in developing markets or where users prefer web

• Choose Native App for:

o Rich hardware integration needs (e.g., AR, NFC, biometric auth)

o Long-term brand engagement

o Complex animations or high-performance requirements

Organizations may benefit from a hybrid strategy: PWAs for discovery and first-use, with deep

linking to native apps for premium functionality.

9. Conclusion

PWAs offer a compelling alternative to native apps in scenarios prioritizing accessibility,

simplicity, and cost efficiency. However, native apps continue to dominate where UX smoothness

Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 62

and system integration are critical. As web APIs evolve and browser support widens, PWAs are

likely to close the functionality gap. Ultimately, application goals and user context should guide

the development path.

10. References

1. Noyes, J., & Ibrahim, R. (2021). Comparative usability analysis of mobile applications:

Native, hybrid, and PWA approaches. Journal of Usability Studies, 16(4), 195–210.

2. Truong, H., & Pham, M. (2020). An empirical study of the performance and energy

efficiency of progressive web apps. Mobile Information Systems, 2020, 1–12.

https://doi.org/10.1155/2020/5393028

3. Ali, S., & Ali, I. (2022). Security implications of deploying PWAs in financial services.

Journal of Web Engineering, 21(2), 145–163.

4. Lal, V., & Sharma, A. (2022). Developer productivity and app scalability across mobile

platforms: A multi-framework assessment. Software: Practice and Experience, 52(3), 345–

368. https://doi.org/10.1002/spe.2968

5. Chen, Y., & Lin, W. (2021). Load balancing and service worker caching strategies in PWA

optimization. IEEE Internet Computing, 25(6), 52–60.

https://doi.org/10.1109/MIC.2021.3076592

6. Talluri Durvasulu, M. B. (2019). Navigating the World of Cloud Storage: AWS, Azure,

and More. International Journal Of Multidisciplinary Research In Science, Engineering

And Technology, 2(8), 1667-1673. https://doi.org/10.15680/IJMRSET.2019.0208012

7. Google. (2021). Case Study: Flipkart’s PWA improves conversions and engagement.

https://developers.google.com/web/showcase/2017/flipkart

8. Munnangi, S. (2022). Achieving operational resilience with cloud-native BPM solutions.

International Journal on Recent and Innovation Trends in Computing and Communication,

10(12), 434–444.

9. Twitter Engineering. (2020). Building Twitter Lite.

https://blog.twitter.com/engineering/en_us/topics/insights/2017/building-twitter-lite.html

10. Hernandez, D., & Al-Masri, E. (2021). Comparative performance analysis of native and

web applications. Journal of Mobile Computing, 9(2), 34–46.

https://doi.org/10.1145/3449904.3449913

11. Kolla, S. (2020). Kubernetes on database: Scalable and resilient database management.

International Journal of Advanced Research in Engineering and Technology, 11(9), 1394–

1404. https://doi.org/10.34218/IJARET_11_09_137

12. Wasserman, A. I. (2022). Software engineering issues for mobile application development.

Future Generation Computer Systems, 122, 312–320.

https://doi.org/10.1016/j.future.2021.12.013

13. Martín, J., & Royo, C. (2020). PWAs vs. native apps: Analysis and development

considerations. ACM SIGAPP Applied Computing Review, 20(4), 23–29.

https://doi.org/10.1145/3432882.3432891

14. Vangavolu, S. V. (2023). The Evolution of Full-Stack Development with AWS Amplify.

International Journal of Engineering Science and Advanced Technology, 23(09), 660-669.

https://doi.org/https://zenodo.org/records/15105044

https://doi.org/10.1109/MIC.2021.3076592
https://developers.google.com/web/showcase/2017/flipkart
https://doi.org/10.1145/3449904.3449913
https://doi.org/10.1145/3432882.3432891

Ijaiem.com/July2025/ Volume 12/Issue 2/Article No-1/58-63

 ISSN: 2319-4847

Page | 63

15. Raj, A., & Gupta, P. (2022). Mobile-first UX principles and performance trade-offs in

hybrid app environments. International Journal of Human-Computer Interaction, 38(5),

456–470. https://doi.org/10.1080/10447318.2022.2025007

